Extensions 1→N→G→Q→1 with N=C22xDic7 and Q=C4

Direct product G=NxQ with N=C22xDic7 and Q=C4
dρLabelID
C22xC4xDic7448C2^2xC4xDic7448,1235

Semidirect products G=N:Q with N=C22xDic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xDic7):1C4 = (C2xC28).D4φ: C4/C1C4 ⊆ Out C22xDic71128-(C2^2xDic7):1C4448,29
(C22xDic7):2C4 = C23.4D28φ: C4/C1C4 ⊆ Out C22xDic71128-(C2^2xDic7):2C4448,33
(C22xDic7):3C4 = C24.2D14φ: C4/C1C4 ⊆ Out C22xDic7112(C2^2xDic7):3C4448,84
(C22xDic7):4C4 = C23:C4:5D7φ: C4/C1C4 ⊆ Out C22xDic71128-(C2^2xDic7):4C4448,274
(C22xDic7):5C4 = C2xC23.1D14φ: C4/C1C4 ⊆ Out C22xDic7112(C2^2xDic7):5C4448,488
(C22xDic7):6C4 = C22:C4xDic7φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7):6C4448,475
(C22xDic7):7C4 = C24.44D14φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7):7C4448,476
(C22xDic7):8C4 = C23.42D28φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7):8C4448,477
(C22xDic7):9C4 = C2xC14.C42φ: C4/C2C2 ⊆ Out C22xDic7448(C2^2xDic7):9C4448,742
(C22xDic7):10C4 = C2xC23.11D14φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7):10C4448,933
(C22xDic7):11C4 = C22xDic7:C4φ: C4/C2C2 ⊆ Out C22xDic7448(C2^2xDic7):11C4448,1236

Non-split extensions G=N.Q with N=C22xDic7 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22xDic7).1C4 = (C22xD7):C8φ: C4/C1C4 ⊆ Out C22xDic7112(C2^2xDic7).1C4448,25
(C22xDic7).2C4 = (C2xDic7):C8φ: C4/C1C4 ⊆ Out C22xDic7224(C2^2xDic7).2C4448,26
(C22xDic7).3C4 = M4(2):Dic7φ: C4/C1C4 ⊆ Out C22xDic7224(C2^2xDic7).3C4448,111
(C22xDic7).4C4 = M4(2).19D14φ: C4/C1C4 ⊆ Out C22xDic71128-(C2^2xDic7).4C4448,279
(C22xDic7).5C4 = C2xC4.12D28φ: C4/C1C4 ⊆ Out C22xDic7224(C2^2xDic7).5C4448,670
(C22xDic7).6C4 = (C2xC56):5C4φ: C4/C2C2 ⊆ Out C22xDic7448(C2^2xDic7).6C4448,107
(C22xDic7).7C4 = Dic7.5M4(2)φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).7C4448,252
(C22xDic7).8C4 = Dic7.M4(2)φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).8C4448,253
(C22xDic7).9C4 = D7xC22:C8φ: C4/C2C2 ⊆ Out C22xDic7112(C2^2xDic7).9C4448,258
(C22xDic7).10C4 = D14:M4(2)φ: C4/C2C2 ⊆ Out C22xDic7112(C2^2xDic7).10C4448,260
(C22xDic7).11C4 = C2xDic7:C8φ: C4/C2C2 ⊆ Out C22xDic7448(C2^2xDic7).11C4448,633
(C22xDic7).12C4 = C2xC56:C4φ: C4/C2C2 ⊆ Out C22xDic7448(C2^2xDic7).12C4448,634
(C22xDic7).13C4 = C2xD14:C8φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).13C4448,642
(C22xDic7).14C4 = M4(2)xDic7φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).14C4448,651
(C22xDic7).15C4 = Dic7:4M4(2)φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).15C4448,652
(C22xDic7).16C4 = D14:6M4(2)φ: C4/C2C2 ⊆ Out C22xDic7112(C2^2xDic7).16C4448,660
(C22xDic7).17C4 = C22xC8:D7φ: C4/C2C2 ⊆ Out C22xDic7224(C2^2xDic7).17C4448,1190
(C22xDic7).18C4 = C2xD7xM4(2)φ: C4/C2C2 ⊆ Out C22xDic7112(C2^2xDic7).18C4448,1196
(C22xDic7).19C4 = C2xC8xDic7φ: trivial image448(C2^2xDic7).19C4448,632
(C22xDic7).20C4 = D7xC22xC8φ: trivial image224(C2^2xDic7).20C4448,1189

׿
x
:
Z
F
o
wr
Q
<